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A novel framework for designing 
a multi‑DoF prosthetic wrist control 
using machine learning
Chinmay P. Swami1,2, Nicholas Lenhard3 & Jiyeon Kang1,4*

Prosthetic arms can significantly increase the upper limb function of individuals with upper limb 
loss, however despite the development of various multi‑DoF prosthetic arms the rate of prosthesis 
abandonment is still high. One of the major challenges is to design a multi‑DoF controller that has 
high precision, robustness, and intuitiveness for daily use. The present study demonstrates a novel 
framework for developing a controller leveraging machine learning algorithms and movement 
synergies to implement natural control of a 2‑DoF prosthetic wrist for activities of daily living (ADL). 
The data was collected during ADL tasks of ten individuals with a wrist brace emulating the absence 
of wrist function. Using this data, the neural network classifies the movement and then random forest 
regression computes the desired velocity of the prosthetic wrist. The models were trained/tested with 
ADLs where their robustness was tested using cross‑validation and holdout data sets. The proposed 
framework demonstrated high accuracy (F‑1 score of 99% for the classifier and Pearson’s correlation of 
0.98 for the regression). Additionally, the interpretable nature of random forest regression was used to 
verify the targeted movement synergies. The present work provides a novel and effective framework 
to develop an intuitive control for multi‑DoF prosthetic devices.

Myoelectric prostheses use a pair of surface electromyography sensors (EMG) to utilize electric motors for 
actuation of the terminal device. The most widely used transradial myoelectric prosthesis can only actuate power 
grasping and typically the wrist is  fixed1. Limited mobility of these prosthetic devices causes compensatory 
trunk movement and unnatural upper body posture when using the terminal device to manipulate  objects2,3. 
Furthermore, repeated excessive upper body movements generate early fatigue and pain which naturally leads 
to overuse of the intact  limb4,5. Multiple survey studies indicate that the dissatisfaction factor of upper limb 
prostheses has been attributed to limited function, control strategy, and having higher  weight6–9. Especially to 
increase the functionality of the prosthetic devices, state-of-the-art prosthetic designs have been developed to 
restore lost limb functions with multiple active degrees of freedom (DoF)10–12.

To actuate multi-DoF prosthetic devices, various control methods using EMG signals have been developed. 
One of the widely explored methods is the state machine approach which used two EMG signals to control 
single joint but allowed for switching between different joints by co-activation of both  muscles13. However, 
these approaches lacked intuitive and simultaneous control of multiple DoF which hindered the dexterity of the 
hand movement during daily living tasks. To overcome the limitations of the state machine approach, pattern 
recognition based solutions used machine learning to identify the patterns present in the EMG signals generated 
during different motor  tasks13–15. But due to the low degree of intuitiveness and increased cognitive  burden16, 
its transition from the lab environment to daily use has been challenging. Furthermore, performance of EMG 
based controllers is limited due to electrode shift, variation in the force from the different pose, and transient 
changes in EMG due to muscle fatigue from long-term  use17. These limitations have rekindled the search for 
alternative approaches to control multi-DoF prosthetic devices. Numerous studies have investigated alternative 
control strategies such as using ultrasound  signals18,19, mapping the muscle deformation to the intended joint 
 angle20, myokinetic  control21, using the tongue as a  joystick22, and movement based  approaches23. Movement 
based control methods are shown to be intuitive by controlling the prosthesis using other joint movements 
instead of muscle  signals24.

Movement based control approaches exploit the residual joint movements for the control of prosthetic joints 
using inertial measurement unit (IMU) sensors. Compensatory movement of the trunk and the arm was used 
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to actuate prosthetic wrist pronation/supination to reduce these compensatory  movements25. Other movement 
based control used existing movement synergies to control the distal joints using the proximal joints of the 
residual  limb24,26. Using the movement synergies between the wrist and the shoulder, the controller allowed 
not only natural and intuitive control of prosthetic wrist pronation/supination but also reduced the cognitive 
burden on the prosthesis  user24.

Especially, various regression models utilizing movement synergies between proximal and distal upper limb 
joints have been widely explored for the control of robotic prosthesis. Merad et al. modeled elbow flexion/
extension by leveraging the natural co-ordination between the elbow and the  shoulder27. Popovic et al.23,28–30 
demonstrated the efficacy of controlling the wrist pronation/supination and elbow flexion/extension using 
shoulder movement. This was achieved by leveraging radial basis function networks (RBFN) to learn and map 
the movement synergies between the proximal and distal joints during reaching movements towards different 
target locations. Although the control approach was intuitive, manual switching between synergies for different 
targeted direction made the control inefficient. To avoid manual switching, multiple artificial neural networks 
were trained using all three DoF of the shoulder and scapuloclavicular  movement31. These previous studies 
showed improved intuitive control, however, they had several limitations. First, they were limited to using the 
movement synergies for modeling only a single DoF of each upper limb joint. Employing movement synergies 
for modeling multi-DoF joint control has not been widely investigated yet. Second, the movement synergies 
were mostly modeled during simple reaching movements. However, tasks carried out during daily living do not 
comprise of only the reaching movements. Last, the previous regression based approaches were modelled based 
on the movement synergies from non-amputee participants. When this model was transferred to the amputee 
participant, the performance decreased because the residual limb movement of amputees is kinematically dif-
ferent from that of non-amputees32.

This study proposes solutions to overcome the limitations discussed above. First, we propose a novel frame-
work that leverages multiple joint synergies for modeling control of a multi-DoF wrist and demonstrate its 
effectiveness. Second, the framework proposes to use the data obtained during ADL tasks to span different 
work spaces and improve the performance of the controller. Third, the inclusion of a wrist brace during the 
data collection is proposed to simulate the kinematics of  amputees3. Fourth, the process of manually modeling 
complex joint synergies for multi-DoF control is eliminated as the framework incorporates machine learning. 
Furthermore, the interpretable nature of the machine learning algorithm enables quantifying the contribution 
of each component of the IMU sensors to the angular velocity of the wrist. Lastly, the proposed framework does 
not apply feature extraction on the IMU signals. This eliminates the time-consuming process of identifying the 
optimal features of the signals and minimizes the post-processing which typically leads to the integration of error 
from long-term use of the prosthetic arm and degrades the performance of the controller.

The core idea behind the proposed framework is to develop a control using machine learning which leverages 
the residual upper limb movement to allow for intuitive control of a multi-DoF prosthetic wrist. Therefore, move-
ment synergies between the wrist and proximal joints are modeled using IMU sensors placed on the residual limb. 
For training the machine learning models, ADL tasks such as Drinking from a cup, Hammering a nail, Twisting 
screws, and Turning a pulley are used. These tasks are chosen because they are commonly used tasks in ADL 
performance measures such as Arm Motor Ability Test (AMAT), Activities Measure for Upper Limb Amputees 
(AM-ULA), and Southampton Hand Assessment Protocol (SHAP)33–37. To record the synergistic relationship, the 
wrist of the participants is braced during the data collection. This allowed to train the machine learning models 
using data acquired from the non-amputee participants emulating the absence of the active wrist movement. Due 
to its interpretable nature, random forest regression is used to map the residual limb movement to the intended 
velocity for radial/ulnar deviation and pronation/supination of the wrist. Rigorous off-line testing involving 
unknown participants’ data is conducted to assess the efficacy of the controller developed using the proposed 
framework. The residual upper limb movement will be mapped to the angular velocity of the respective wrist 
movement by the machine learning models. This angular velocity can be used as a control signal for a robotic 
prosthesis to actuate a multi-DoF wrist. Due to the use of the intuitive movement synergies for volitional control, 
we envision this novel framework for the development of the prosthetic controller, to contribute towards reduced 
compensatory movement and reduced mental burden on the prosthesis user. Furthermore, the framework can 
be easily extended to incorporate other additional upper limb movements including wrist flexion/extension.

Results
The upper limb kinematics of ten non-amputee subjects was collected when they performed four activities of 
daily living (ADL). The ADL tasks required the subjects to perform wrist radial/ulnar deviation or pronation/
supination. Motion capture data and IMU signals were used to train and test the machine learning models. 
Especially, for training the machine learning models the IMU signals were used without computing the joint 
angles or extracting any features from the signals.

As shown in Fig. 1, the presented framework for developing the controller consists of three main components: 
neural network classifier, random forest regression models, and control modules. The neural network classifier 
was trained to identify the intent for either radial/ulnar deviation (RUD) or pronation/supination (PS) based on 
the IMU signals. For training regression models, the measured angular velocities of RUD and PS were obtained 
using a motion capture system. Random forest regression models were trained with IMU signals as inputs 
and the measured angular velocity as outputs. Two regression models were individually trained to predict the 
angular velocities for RUD and PS movements respectively. Next, two control modules received the predicted 
velocity from the regression models for each wrist movement. The control modules compute angular velocities 
which will be used to control the velocity of the motors in a prosthetic arm. Each control module is comprised 
of an Algorithm 1 that augments the angular velocity to incite increased wrist movement. The control modules 
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augment the wrist movement because the brace restrained the movement of the wrist. Since control modules 
can modulate the magnitude of predicted angular velocities, the importance of achieving low root mean squared 
error (RMSE) is reduced if the correlation coefficient is  high38.

In the following sections, θ̇M will be used to represent the angular velocities observed using a motion capture 
system during ADL tasks (measured angular velocity) , θ̇R will be used to represent the angular velocity predicted 
by the regression models (predicted angular velocity), and θ̇C will be used to represent the angular velocity gener-
ated by the controller (controller output angular velocity).

Neural network classifier. The validation process of neural network classifier focused primarily on the 
ability of the model to accurately classify and generalize between subjects. Therefore, the model was trained using 
a set of randomly selected participants and tested on remaining participants that were unknown to the model. 
Figure 2a shows the observed classifier performance in the three variations of testing that were conducted. Each 
variation was repeated 30 times, each time generating a unique combination of participants. The performance of 
the model on each combination was averaged to indicate overall performance for the corresponding variation of 
testing. A detailed description of this process is discussed in the methods section. The performance of the model 
was evaluated using F-1 score which is the harmonic mean of precision and  recall39. Precision evaluates the frac-
tion of correctly classified instances among the ones classified as positive. The recall is a metric that quantifies the 
number of correct positive predictions made out of all positive predictions that could have been made. Figure 2a 
shows the precision, recall, and F-1 score averaged across all combinations for each variation of testing.

In the first variation of testing, an average F-1 score, precision, and recall of 0.99 were observed for different 
combinations of participants. Although a slight drop from 0.99 to 0.987 and 0.988 was observed in average preci-
sion and recall during the second variation of testing, the model’s performance was similar to the first variation 
of testing. Furthermore, the model’s performance in the third variation of testing was analogous to the second 
variation of testing even though it was trained with less number of participants. Between all the three variations 
of testing, the smallest F-1 score, precision, and recall of 0.95 were observed in the second variation for one of 
the combinations of participants. Further analysis of the model’s performance is shown in Fig. 2b representing 
the confusion matrix which indicates the number of correctly and incorrectly classified instances averaged across 
all combinations of the participants for each variation of testing.

Random forest regression model. The validation process of the regression models focused primarily on 
quantifying how far the regression model’s predictions were from the measured angular velocity. For assessing 
the robustness of the models, the models were not only trained/tested using the grouped data of all participants 
(generic model) but also trained/tested using each individuals’ data separately (individual model). Furthermore, 
to assess the model’s performance on unknown participants, the three variations of testing discussed in neural 
network section was also conducted. Fig. 3 illustrates the comparison between the measured angular velocity 
and the predicted angular velocity from the generic regression models for one representative participant during 
ADL tasks. Table 1a shows the performance of the regression models trained using all participants’ data and 
Table 1b shows the performance of the regression models in the three variations of testing.

In Table 1a, models trained using all participants’ data had an overall root mean squared error (RMSE) of 
7.45 deg/s when averaged over all ADL tasks. The highest RMSE of 11.67 deg/s was observed for the pulley task. 
For radial/ulnar deviation related tasks RMSE of 4.84 deg/s was observed whereas pronation/supination related 

Figure 1.  Overview of the proposed framework for modelling multi-DoF wrist control. Data collected from 
activities of daily living is used to train neural network classifier and regression models of radial/ulnar deviation 
(RUD) & pronation/supination (PS). Regression models and the control modules predict the angular velocity 
for controlling motors in a robotic prosthetic wrist. θ̇M_RUD and θ̇M_PS represent the measured angular velocities 
for RUD and PS computed using a motion capture system. θ̇R_RUD and θ̇R_PS represent angular velocities for 
RUD and PS predicted by regression models. θ̇C_RUD and θ̇C_PS are angular velocities generated by the controller 
modules for RUD and PS.
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Figure 2.  (a) Neural network classifier performance with precision, recall, and F-1 score averaged across all the 
test sets. Variation 1 involved testing on two unknown participants to the model, variation 2 involved testing 
on three unknown participants, and variation 3 involved testing on four unknown participants. (b) Confusion 
matrices depicting the classification performance of neural network models for all 3 variations of testing.

Figure 3.  Measured Vs Predicted angular velocity and the controller generated angular velocity for one 
representative participant during each task. (a) Cup and (b) hummer tasks are designed for radial/ulnar 
deviation. (c) pulley and (d) screw driver tasks are designed for pronation/supination.
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tasks, RMSE was 9.82 deg/s. Mean absolute error (MAE) between the peaks in measured angular velocity and 
the predicted angular velocity was also computed. The average peak MAE for all tasks was 2.34 deg/s with the 
highest MAE of 3.04 deg/s for the pulley task. Pearson’s correlation coefficient was also computed between the 
measured ( ̇θM ) and the predicted ( ̇θR ) angular velocity for each ADL task to evaluate the similarity in the patterns 
of the two signals. In Table 1a, the highest correlation of 0.99 was observed for the Pulley task whereas the lowest 
correlation of 0.97 was observed for the Hammer task. Lastly, the coefficient of determination for each trained 
tree was computed using 37% of the training data points that are unknown to the  trees40 and was aggregated 
across the trees to indicate the performance of the random forest regression model, called as Out-of-Bag  score41. 
An Out-of-Bag score of 0.99 was observed for both RUD and PS related tasks. As shown in Table 1b, when the 
models were tested on unknown participants in the three variations of testing, the RMSE values were in the 
range of 13.22 to 13.53 deg/s. Furthermore, Table 2 summarizes the RMSE values observed for the models that 
were trained and tested for data of each individual participant. The average RMSE of individual models was in 
the range of 4.4 to 12.4 deg/s, similar to the generic model trained with all participants’ data.

Controller output. The brace limited the wrist movement and the controller utilizes the synergistic move-
ment of the residual proximal joints to create wrist movement. To reduce the movement of proximal joints in 
the residual limb, the wrist movement needs to be amplified. Therefore, the control module was implemented, 
comprising of Algorithm 1, to augment the angular velocities predicted by the regression models. The valida-
tion process focused on assessing the similarity between the angular velocity measured by the motion capture 
system (θ̇M ) and the angular velocity generated by the controller (θ̇C ). Figure 3 depicts the angular velocity gen-
erated by the controller for one of the subjects during all four tasks.

An overall correlation of 0.9974 was observed between the measured and the controller generated angular 
velocity for all the ADL tasks. An average correlation of 0.9998 was observed for RUD and 0.9979 was observed 
for PS related tasks. These high correlation values indicate that the angular velocity generated by the controller 
closely follows the angular velocity measured by the motion capture system. But higher peaks were observed in 
the angular velocities generated by the controller when comparing with the magnitude of the measured angular 
velocities. This is expected because the angular velocities, predicted based on the movement synergies, are ampli-
fied by the controller with the intention of reducing the movement of the proximal joints in the residual limb.

Table 1.  (a) Performance measures for generic regression models trained with the data of all participants. (b) 
Performance measure for regression models trained with the data of a few participants and tested on unknown 
participants with three different variations. Variation 1 tested on two unknown participant, variation 2 tested 
on three unknown participants, and variation 3 tested on four unknown participants. Units for RMSE and 
Peak MAE are deg/s.

(a) Performance of regression models on different  ADLs

Activity RMSE Peak MAE Correlation

Cup 6.1067 2.1502 0.9894

Hammer 3.6077 1.6122 0.9714

Pulley 11.6656 3.0363 0.9902

Screwdriver 8.0218 2.4942 0.9810

Average 7.4464 2.3415 0.9833

(b) RMSE of regression models on unknown participants

 Activity Variation 1 Variation 2 Variation 3

Cup 11.7418 11.8774 11.9929

Hammer 7.0046 7.0895 7.8180

Pulley 19.7644 20.5803 20.1278

Screwdriver 14.3792 14.1315 14.2167

Average 13.2225 13.4196 13.5388

Table 2.  Table summarizing RMSE values between measured ( ̇θM ) and predicted ( ̇θR ) angular velocity of 
random forest regression models trained/tested using each individual participant’s data.

Individual models RMSE (deg/sec)

Activity 1 2 3 4 5 6 7 8 9 10 Avg.

Cup 6.252 3.984 4.874 5.924 11.618 3.179 7.836 5.215 10.234 7.795 6.691

Hammer 5.829 2.311 6.996 3.323 4.916 5.207 2.442 3.886 3.409 3.843 4.216

Pulley 21.905 8.158 10.769 5.412 12.550 14.321 15.765 15.201 13.253 7.417 12.475

Screwdriver 6.959 8.351 10.708 8.066 12.641 7.691 7.648 8.570 11.454 6.788 8.887
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Discussion
The aim of this study is to demonstrate the feasibility of controlling multi-DoF wrist of a prosthetic arm by using 
the residual upper limb motion. A methodical off-line investigation was performed to present the robustness of 
the developed controller. A novel framework, illustrated by Fig. 1, is proposed where a neural network classifier 
and two random forest regression models were trained using IMU signals to model the movement synergies and 
predict the user’s intent and angular velocities for the wrist movement. The result of our study shows that the 
controller developed using the framework can be successfully used to generate the angular velocity for both RUD 
and PS, using only residual upper limb motion. Furthermore, the proposed framework has the advantage of not 
requiring feature extraction or joint angle computations. Since joint angles were not used to train the models, 
accumulation of errors due to integration was also minimized. Moreover, the models were designed with the 
data acquired from ADL tasks, instead of using simple reaching tasks as in previous  studies23,27–32.

The neural network classifier not only showed good classification performance but also generalized across 
unknown participants as shown in Fig. 2 indicating the F-1 score and confusion matrices. The neural network 
classifier, trained using only six participant’s data, was able to decode the intent of the 4 unknown participants 
to either perform radial/ulnar deviation or pronation/supination with a high accuracy of 98%. Augmenting 
the training data with more participant data only increased the classification accuracy as shown in Fig. 2a. This 
performance is comparable to the results reported in previous literature where finger and wrist posture were 
classified with the accuracy ranging from 80 to 99.99 % using various machine learning methods such as linear 
discriminant analysis (LDA), support vector machines (SVM) or artificial neural networks (ANN)42,43.

The random forest regression models were able to map the accelerometer and gyroscope signals to the 
angular velocity of RUD and PS with high precision as shown in Fig. 3 and Table 1a. Furthermore, the model’s 
success in exploiting the postural synergies and the robustness of the model was demonstrated by comparison 
of generic and individual model, in addition to the validation with hold out data sets. Among the four different 
ADLs, pulley task showed higher RMSE compared to other tasks. We believe that this observation is due to the 
need for complex movement involved in pulley task, spanning three dimensional workspace. However, a high 
correlation coefficient of 0.99 is observed for the Pulley task which indicates high degree of similarity between 
the measured and predicted angular velocities as shown in Table 1a. As control modules allow to change the 
magnitude of predicted angular velocities, high correlation coefficient is sufficient even though high RMSE 
values were  observed38.

An overall correlation coefficient of 0.98 for random forest regression and 0.99 for the control modules was 
observed in our study. Kaliki et al. reported a correlation coefficient of 0.97 by using shoulder movement as 
an input to a neural network for predicting wrist pronation/supination angles during reaching  tasks31. Merad  
et al. modeled the postural synergies when the participants performed reaching movements using radial basis 
function network to control elbow flexion/extension which resulted in a correlation coefficient of 0.88. Another 
study using time delayed neural network and EMG signals observed a correlation coefficient of 0.68 between 
the measured and predicted joint angles for wrist pronation/supination44. Other previous studies that used EMG 
signals and regression methods for wrist flexion/extension and radial/ulnar deviation reported correlation coef-
ficients in the range of 0.70 to 0.9845–49. We believe that using common synergistic patterns present in different 
tasks and individuals improved the prediction capability of our random forest regression  models50.

For designing a prosthetic controller with multiple DoFs, identification of multiple movement synergies and 
manually mapping the movement synergies for each DoF are required which can be challenging. The proposed 
framework allows identifying the synergistic relationship between the residual and prosthetic joints by using 
the data collected from different ADLs. The random forest regression algorithm was adopted to identify features 
that contributed to the prediction. In Fig. 4b,c, the important features identified by random forest regression 
models were used to validate the movement synergies. The features identified as important by the random forest 
regression were in harmonious to the previously published movement  synergies3,26,51. As shown in Fig. 5, radial/

Figure 4.  (a) IMU sensor locations on the upper limb. The faded sensor is attached on the posterior side of the 
upper limb. (b) Illustration of the important features contributing to predicting angular velocities for radial/
ulnar deviation of the wrist. (c) Illustration of the important features for pronation/supination. The solid circles 
in the outer rim indicate features with highest contribution towards prediction of angular velocities.
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ulnar deviation related ADL tasks involved elbow flexion/extension. For pronation/supination related ADL 
tasks, shoulder ab/adduction instigated the axial rotation in forearm. Figure 4b,c demonstrate the framework’s 
capability to successfully learn these movement synergies to predict the angular velocities for multi-DoF wrist 
movements. Additionally, the information about the sensor contribution can be used to determine the optimal 
number of sensors for the prosthetic controller with high DoF or assist in troubleshooting the controller in case 
the model’s behaviour is unexpected. Lastly, as the angular velocity and the acceleration measured by the IMU 
sensors contribute to the predicted angular velocity of the wrist, the controller is less sensitive to different upper 
arm postures.

Although the proposed framework was shown to yield high level of off-line performance, the study was lim-
ited to off-line evaluation. Therefore, future studies will be focused on empirical analysis in a real-time virtual 
environment and assess the reliability of the controller. Real-time testing will be also conducted to garner in-
depth user experience of operating the suggested controller. We will also explore long-term use of our controller 
and validate the performance when it is repeatedly used. This study did not analyze the effects of discarding less 
significant features on the performance of regression and classification models. Further studies are required for 
analyzing the effects of removing such features on the performance of models and how the explainable nature 
of the models can be used in reducing the number of sensors.

Using this study as a starting point, we plan to further analyze the efficacy of the framework by recruiting 
both amputee and non-amputee participants. A comparison between the models developed on non-amputee 
participants and the models developed on the amputee participants using the suggested framework would provide 
more insight into the efficacy of the framework. This comparison will test our hypothesis that developing machine 
learning models using movement synergy data, acquired by emulating amputee participants with a brace, has 
better prediction capabilities and higher chances of success with amputees compared to the models developed on 
data acquired without using the brace. Furthermore, we plan on extending the proposed framework for modeling 
3-DoF active wrist movements by including flexion/extension. Lastly, if the framework is found to be successful 
in amputee trials, we plan to implement the developed controller in a robotic prosthesis and conduct experi-
ments with amputee participants to assess the performance of the framework using standard clinical measures.

Conclusion
In this paper, a novel framework for the control of multi-DoF prosthetic wrist was presented. The framework 
uses movement synergies present in the upper limbs by leveraging a neural network classifier and random for-
est regression to allow multi-DoF control of a prosthetic wrist. This movement synergy based actuation of the 
prosthetic limb has a higher chance of creating natural wrist movements during ADL tasks and reduce compen-
satory movement. The model was trained using raw IMU data without any post-processing such as converting 
IMU data in global coordinates to compute joint angles or extracting features. Furthermore, the random forest 
algorithm allows for easy inclusion of sensor data with different physical metrics due to its robust structure. In 
the present study, the models’ performance on the dataset recorded during trials involving four different ADL 
tasks showed high performance. Classification accuracy of 99% was achieved by the neural network classifier. 
The random forest regression models had an RMSE of 7.44 deg/s with a correlation coefficient of 0.98 between 
the measured and predicted angular velocity. The observed results are quite promising, propounding the use of 
the proposed framework in developing the controller for multi-DoF prosthetic wrist. The proposed framework 
can be easily extended to additional upper limb movements. Future work will involve real-time testing of the 
proposed framework using a virtual reality environment and amputee participants.

Methods
Human experiment set‑up. The experimental protocol was approved by the Institutional Review Board 
(IRB) of University at Buffalo. All participants were over 18 years old. They were informed about the research 
procedures and signed a written consent form approved by the IRB before participating in the study. All experi-
ments were performed in accordance with relevant guidelines and regulations. Ten healthy subjects (three 
females and seven males with an average weight of 70.20 ± 17.31 kg and an average height of 173.29 ± 12.07 cm) 
performed tasks that were designed to emulate activities of daily living (ADL). An off-the-shelf brace was modi-
fied to restrict the wrist motion so that the movements made by the proximal joints will be emphasized. A 
motion capture system with ten infrared cameras (Vicon, UK) sampling at 100 Hz was used to record the upper 

Figure 5.  Postural synergies exhibited by the participants during hammering task and door knob (pulley in the 
experiment) rotating task.
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limb movements. In addition, five Trigno Avanti IMU sensors (Delsys, US) sampling at 148 Hz were used to 
acquire movement data.

Experimental procedure. Fifteen reflective markers were attached on bony landmarks as shown in Fig. 6a. 
Five IMU sensors were placed on the participants as shown in Fig. 4a. Y-axes of IMU’s were aligned with the 
long bones of the arm and the Z-axes of IMU’s were perpendicular to the skin. The ADL tasks were primarily 
designed to acquire data pertaining to two wrist motions: radial/ulnar deviation and pronation/supination52,53. 
Drinking from a cup and hammering a nail were designed for acquiring wrist radial/ulnar deviation data. Twist-
ing the screws and turning the pulley were designed to acquire pronation/supination data. For each ADL task, 
five trials were conducted, and each trial started and ended with participants maintaining a default pose known 
as a T-Pose where participants stand with both shoulders abducted at 90◦ , elbows completely extended, and 
palms facing down. Furthermore, for the tasks involving clockwise and anti-clockwise movement, participants 
transitioned to T-Pose for a brief period after performing the clockwise movement and before initiating anti-
clockwise movement. A metronome was used to have uniform speed throughout the trials. The experiment took 
an average of 2.5 h to complete. Following were the four ADL tasks for each trial:

• Drinking from a cup: This task was adopted from the AM-ULA performance assessment measure where 
participants mimicked the action of drinking from a  cup34. The participants had to pick up the cup placed 
on the table, bring it closer to the mouth and then try to tilt the cup to simulate drinking. The participants 
mimicked the drinking action for 10 times.

• Hammering a nail: This task is similar to ‘Use a hammer and nail’ task from the AM-ULA performance 
assessment measure and involved the participant hitting a nail with a hammer at a constant  speed34. The 
participant picked up the hammer and positioned the hammer on top of the nail mounted on a wooden 
board. The participants hit the nail ten times.

• Twisting screws: This task was designed to simulate ‘Rotate a Screw’ task from SHAP performance assessment 
 protocol36, and consisted of twisting 3 screws in the clockwise and anti-clockwise directions in the transverse 
plane. Participants picked up the screwdriver and first twisted each screw three times in a clockwise direction, 
and then twisted the three screws in an anti-clockwise direction.

• Turning a pulley: This activity was designed to simulate turning a doorknob or a bulb which are activities 
performed on a daily basis. These tasks are a part of multiple performance assessment  measures34, 36, 54. This 
task consisted of turning a pulley in the clockwise and anti-clockwise directions in the frontal plane. Partici-
pants reached the pulley and turned the pulley five times in a clockwise direction and then turned the pulley 
five times in an anti-clockwise direction.

Figure 6.  (a) Location of reflective markers attached on the upper limb during the experiment. (b) Illustration 
of basis vectors used for computation of angular velocity for radial/ulnar deviation and pronation/supination of 
the wrist. (c) A participant performing four different ADL tasks with the wrist brace.
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Data pre‑processing. For computing angle representing radial/ulnar deviation, two vectors, one from 
RSHO to LSHO and the other from RSHO to C7, were used to form a plane. A vector perpendicular to this 
plane was used as the reference axis and had the origin at RSHO. Another vector from RSHO to RFIN was 
created and the angle between the reference axis and this vector was used as the angle representing the radial/
ulnar deviation. For pronation/supination of the wrist, joint angles of the distal segment (forearm) relative to the 
proximal segment (upper arm) were computed. The coordinate system described by the ISB standards was used 
to define the coordinates for the forearm  segment55. For the forearm, the Y-axis was defined by the vector from 
wrist midpoint to the elbow midpoint. The Z-axis was a vector from wrist midpoint to RWRLAT and the X-axis 
was the vector perpendicular to the plane formed by the Z and Y-axis. For the proximal segment, the Y-axis was 
defined by a vector from the elbow midpoint to the RSHO marker. The Z-axis was a vector from elbow midpoint 
to RELBLAT and the X-axis was the vector perpendicular to the plane formed by the Z and Y-axis. Using the 
Z-X-Y Euler rotation sequence, the rotation of the forearm segment around Y-Axis was used as angle for wrist 
pronation/supination. Figure 6b illustrates the detailed coordinate axes used for computing both wrist angles.

The kinematic data captured by the motion capture system was filtered using 4th order low-pass Butterworth 
filter with a cutoff frequency of 6 Hz. The radial/ulnar deviation and pronation/supination angles were filtered 
with a low-pass Butterworth filter having a cutoff frequency of 1 Hz. Angular velocities were numerically com-
puted and then passed through the same low-pass filter. The signals generated by the IMU sensors were filtered 
using a 3rd order low-pass Butterworth filter with a cutoff frequency of 1 Hz.

ML model training. Machine learning was employed to achieve two things. First, the intent of the user for 
either radial/ulnar deviation or pronation/supination will be identified. Second, machine learning model will 
predict the angular velocity required to provide the desired motor speed for the respective wrist movement. To 
achieve this, first, a neural network based binary classifier was developed to initially classify the user’s intent to 
either deviate radius/ulna or pronate/supinate the wrist. Then two random forest regression models were trained 
to predict the angular velocity, one for radial/ulnar deviation and the other for pronation/supination. Figure 1 
illustrates the training process along with the inputs to the ML models and their outputs. Systematic off-line 
evaluation was conducted on the trained machine learning models by excluding some participants’ data from 
the training set.

Classification model. A densely connected neural network with two hidden layers was created using Python 
3.7 and Keras 2.4.356 to accomplish the task of binary classification. The input to the neural network classifier 
was IMU signals from the sensors shown in Fig. 4a and the output was probabilities for each class. The class with 
the highest probability was considered as the user’s intent. The first hidden layer consisted of ten neurons and 
the second hidden layer consisted of five neurons. The hidden layers used ReLU (rectified linear unit)57 as the 
activation function and the output layer used Softmax as the activation  function58. Binary cross entropy was used 
as a loss function with Adam (adaptive moment estimation) as the  optimizer59. The number of hidden layers 
and neurons was determined by trial and error to avoid overfitting of the model. Neural networks trained using 
smaller batch sizes have been shown to generalize  well60. Therefore, through trial and error, a small batch size of 
eight was used for training the classifier.

To validate the efficacy of the model, three variations of testing were performed. In the first variation of 
testing, 30 unique combinations of eight participants were generated by random selection. For each of the 30 
combinations, eight participants’ data was used to train the model and the two excluded participants’ data was 
used to assess the quality of the fit. For the second variation of testing, a procedure similar to the first variation 
was adopted however, instead of eight participants, seven unique participants were used to form 30 unique 
combinations. And in the third variation, a similar procedure but with six participants was performed.

Macro-Averaged F-1 score, Macro-Averaged precision, and Macro-Averaged recall along with confusion 
matrix provided quantitative measures indicating the performance of the trained classifier models across differ-
ent variations. F-1 score is the harmonic mean of precision and recall which indicates the accuracy with which 
the classifier identifies a class and is robust to the class imbalance in  dataset61. Precision evaluates the fraction 
of correctly classified instances among the ones classified as positive. The recall is a metric that quantifies the 
number of correct positive predictions made out of all positive predictions that could have been made. A detailed 
description of these assessment methods can be found  in39.

Regression model. When evaluated against a variety of supervised learning algorithms using different per-
formance criteria and data sets, random forest performed better than most of the other popular learning 
 algorithms62. They have been fairly successful in inferring from different bio  signals63 and have been used in 
modeling controllers for  prostheses64–66.

Random forest is a type of ensemble learning algorithm based on the ‘divide and conquer’ strategy and con-
sists of two core components: CART (classification and regression trees) split criterion and  Bagging41. CART 
split criterion regulates the construction of each individual tree in the forest. Bagging is a method in which 
bootstrapped samples are generated from the original data set and each sample is used to fit a different tree in the 
forest. The random forest algorithm is comprised of three main steps. First, for a given training set D, T sets of n 
elements are sampled from D with replacement. Second, for each subsample, a decision tree is constructed using 
CART. In random forest, CART is modified to have a fixed number of randomly selected features for splitting 
the data. The number of randomly selected features used for splitting the subsample is held constant throughout 
the process. The quality of the split is assessed using mean squared error (MSE), and the set of randomly selected 
features that yields the best split is selected. Furthermore, the trees are not pruned and are allowed to grow to 
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their largest possible extent or to some predefined threshold. Lastly, prediction p for a new input r is computed 
by aggregating the outputs of the trained regression trees R1,R2...RT in the forest as indicated by Eq. (1)67.

Another advantage of random forest is computation of feature importance which helps in identifying features 
that have a strong influence in predicting the angular velocity, θ̇R . The feature importance is measured by the 
overall decrease in variance when split on a feature averaged across all the trees. Thus, weighted decrease in 
variance corresponding to split along the feature fj is computed and is averaged over all trees, where fj is the jth 
feature in dataset D. A detailed description of the algorithm can be found  in41,68. The feature importance was 
used to identify the signals of the IMU sensors which influenced the most in predicting the angular velocity 
θ̇R . Furthermore, it also allowed us to validate the movement synergies by checking if the sensors identified as 
important were harmonious to the observed movement synergies.

The random forest regression models were developed using Python 3.7 and Scikit-learn69. Using Grid-
searchCV from Scikit-learn, it was found that a forest with 50 trees having a maximum depth of 40 performed 
well in predicting the angular velocities for both radial/ulnar deviation and pronation/supination. Two training 
data sets were created, one for radial/ulnar deviation and the other for pronation/supination containing IMU 
data collected during ADLs. To assess the model’s predictions, three different approaches were used. The first 
approach involved using 4 trials of all the participants to train the model and using the 5th trial to test it. In 
the Second approach, models were trained and tested for each individual instead of one generic model trained 
using all participants’ data. The third approach was similar to the three variations of testing discussed in the 
neural network classifier section where the regression models were trained on a few participants and tested on 
the remaining unknown participants. The model’s performance was judged by measuring the similarity between 
measured ( ̇θM ) and the predicted ( ̇θR ) angular velocity for the wrist using root mean squared error (RMSE) and 
mean absolute difference between the peaks. Pearson’s correlation coefficient R was also computed because it is 
independent of the unit, enabling comparison with previous  studies70. Furthermore, due to bagging when the 
individual trees are trained, around 37% of the training data points are unknown to the trees in the  model40. 
Hence, these unknown data points are used to assess the performance of the trained tree and aggregated across 
the trees to indicate the performance of the entire model also known as Out-of-Bag  score41. Performance on 
Out-of-Bag samples was also tracked by computing the coefficient of determination, R 2.

Control module design and testing. As shown in Fig. 1, two control modules were developed for each 
radial/ulnar deviation and pronation/supination of the wrist, in order to increase the wrist movement and 
reduce the required range of motion of residual limb to control the wrist. Each control module receives the 
predicted angular velocity ( ̇θR ) from the regression models. The control module is comprised of an algorithm 
that augments the predicted angular velocity ( ̇θR ) by a given value gain to increase the wrist movement. Now 

(1)p(r) =
1

T

T∑

t=1

Rt(r)
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instead of keeping a constant value for gain, we increase or decrease the gain by � at time t by comparing the pre-
dicted angular velocity ( ̇θR ) at time t and t − 1 . The gain value had upper ( gainmax ) and lower ( gainmin ) bounds 
to ensure that controller generates angular velocity ( ̇θC ) that isn’t too large or too low. From trial and error, 
� = 0.00008 , gainmax = 2 and gainmin = 1 were used to compute the desired motor velocity in the controller 
algorithm. Furthermore, the maximum angular velocity is controlled by θ̇max . Algorithm 1 depicts the pseudo-
code of the iterative gain algorithm.

Data availability 
The data from IMU sensors and motion capture system during four different ADLs will be available upon request 
to the corresponding author (jiyeonk@buffalo.edu).

Received: 21 January 2021; Accepted: 12 July 2021

References
 1. Dalley, S., Wiste, T., Withrow, T. & Goldfarb, M. Design of a multifunctional anthropomorphic prosthetic hand with extrinsic 

actuation. IEEE/ASME Trans. Mech. 14, 699–706. https:// doi. org/ 10. 1109/ TMECH. 2009. 20331 13 (2009).
 2. Cowley, J., Resnik, L., Wilken, J., Smurr Walters, L. & Gates, D. Movement quality of conventional prostheses and the deka arm 

during everyday tasks. Prosthet. Orthot. Int. 41, 33–40. https:// doi. org/ 10. 1177/ 03093 64616 631348 (2017).
 3. Carey, S. L., Jason Highsmith, M., Maitland, M. E. & Dubey, R. V. Compensatory movements of transradial prosthesis users during 

common tasks. Clin. Biomech. 23, 1128–1135. https:// doi. org/ 10. 1016/j. clinb iomech. 2008. 05. 008 (2008).
 4. Gambrell, C. R. Overuse syndrome and the unilateral upper limb amputee: Consequences and prevention. J. Prosth. Orthot. 20, 

126–132. https:// doi. org/ 10. 1097/ JPO. 0b013 e3181 7ecb16 (2008).
 5. Østlie, K., Franklin, R. J., Skjeldal, O. H., Skrondal, A. & Magnus, P. Musculoskeletal pain and overuse syndromes in adult acquired 

major upper-limb amputees. Arch. Phys. Med. Rehabil. 92, 1967–1973. https:// doi. org/ 10. 1016/j. apmr. 2011. 06. 026 (2011).
 6. Biddiss, E., Beaton, D. & Chau, T. Consumer design priorities for upper limb prosthetics. Disabil. Rehabil. Assist. Technol. 2, 

346–357. https:// doi. org/ 10. 1080/ 17483 10070 17147 33 (2007).
 7. Cordella, F. et al. Literature review on needs of upper limb prosthesis users. Front. Neurosci. 10, 209. https:// doi. org/ 10. 3389/ fnins. 

2016. 00209 (2016).
 8. Stephens-Fripp, B., Jean Walker, M., Goddard, E. & Alici, G. A survey on what Australians with upper limb difference want in 

a prosthesis: Justification for using soft robotics and additive manufacturing for customized prosthetic hands. Disabil. Rehabil. 
Assist. Technol. 15, 342–349. https:// doi. org/ 10. 1080/ 17483 107. 2019. 15807 77 (2020).

 9. Resnik, L. J., Borgia, M. L. & Clark, M. A. A national survey of prosthesis use in veterans with major upper limb amputation: 
Comparisons by gender. PM and R 12, 1086–1098. https:// doi. org/ 10. 1002/ pmrj. 12351 (2020).

 10. Bennett, D. A., Mitchell, J. E., Truex, D. & Goldfarb, M. Design of a myoelectric transhumeral prosthesis. IEEE/ASME Transact. 
Mechatron. 21, 1868–1879. https:// doi. org/ 10. 1109/ TMECH. 2016. 25529 99 (2016).

 11. Lenzi, T., Lipsey, J. & Sensinger, J. W. The ric arm-a small anthropomorphic transhumeral prosthesis. IEEE/ASME Transact. 
Mechatron. 21, 2660–2671. https:// doi. org/ 10. 1109/ TMECH. 2016. 25961 04 (2016).

 12. Bandara, D., Gopura, R., Hemapala, K. & Kiguchi, K. Development of a multi-dof transhumeral robotic arm prosthesis. Med. Eng. 
Phys. 48, 131–141. https:// doi. org/ 10. 1016/j. meden gphy. 2017. 06. 034 (2017).

 13. Vujaklija, I., Farina, D. & Aszmann, O. C. New developments in prosthetic arm systems. Orthoped. Res. Rev. 8, 31–39. https:// doi. 
org/ 10. 2147/ ORR. S71468 (2016).

 14. Hudgins, B., Parker, P. & Scott, R. N. A new strategy for multifunction myoelectric control. IEEE Transact. Biomed. Eng. 40, 82–94. 
https:// doi. org/ 10. 1109/ 10. 204774 (1993).

 15. Graupe, D., Salahi, J. & Kohn, K. H. Multifunctional prosthesis and orthosis control via microcomputer identification of temporal 
pattern differences in single-site myoelectric signals. J. Biomed. Eng. 4, 17–22. https:// doi. org/ 10. 1016/ 0141- 5425(82) 90021-8 
(1982).

 16. Jiang, N., Dosen, S., Muller, K. & Farina, D. Myoelectric control of artificial limbs-is there a need to change focus? [in the spotlight]. 
IEEE Signal Process. Mag. 29, 150–152. https:// doi. org/ 10. 1109/ MSP. 2012. 22034 80 (2012).

 17. Scheme, E. & Englehart, K. Electromyogram pattern recognition for control of powered upper-limb prostheses: State of the art 
and challenges for clinical use. J. Rehabil. Res. Dev. 40, 643–660. https:// doi. org/ 10. 1682/ JRRD. 2010. 09. 0177 (2011).

 18. Dhawan, A. S. et al. Proprioceptive sonomyographic control: A novel method for intuitive and proportional control of multiple 
degrees-of-freedom for individuals with upper extremity limb loss. Sci. Rep. 9. https:// doi. org/ 10. 1038/ s41598- 019- 45459-7 (2019).

 19. Guo, J. Y., Zheng, Y. P., Xie, H. B. & Koo, T. K. Towards the application of one-dimensional sonomyography for powered upper-
limb prosthetic control using machine learning models. Prosth. Orthot. Int. 37, 43–49. https:// doi. org/ 10. 1177/ 03093 64612 446652 
(2013).

 20. Kato, A. et al. Continuous wrist joint control using muscle deformation measured on forearm skin. in IEEE International Confer-
ence on Robotics and Automation (ICRA), 1818–1824. https:// doi. org/ 10. 1109/ ICRA. 2018. 84604 91 (2018).

 21. Tarantino, S., Clemente, F., Barone, D., Controzzi, M. & Cipriani, C. The myokinetic control interface: Tracking implanted magnets 
as a means for prosthetic control. Sci. Rep. 7. https:// doi. org/ 10. 1038/ s41598- 017- 17464-1 (2017).

 22. Palsdottir, A. A., Dosen, S., Mohammadi, M. & Andreasen Struijk, L. N. Remote tongue based control of a wheelchair mounted 
assistive robotic arm—A proof of concept study. in IEEE International Conference on Mechatronics and Automation (ICMA), 1300–
1304. https:// doi. org/ 10. 1109/ ICMA. 2019. 88164 15 (2019).

 23. Popović, D. B., Popović, M. B. & Sinkjær, T. Life-like control for neural prostheses: “Proximal controls distal”. in Annual Interna-
tional Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 7648–7651. https:// doi. org/ 10. 1109/ iembs. 
2005. 16162 83 (2005).

 24. Bennett, D. A. & Goldfarb, M. IMU-based wrist rotation control of a transradial myoelectric prosthesis. IEEE Transact. Neural 
Syst. Rehabil. Eng. 26, 419–427. https:// doi. org/ 10. 1109/ TNSRE. 2017. 26826 42 (2018).

 25. Legrand, M., Jarrassé, N., Richer, F. & Morel, G. A closed-loop and ergonomic control for prosthetic wrist rotation. in IEEE Inter-
national Conference on Robotics and Automation (ICRA), 2763–2769. https:// doi. org/ 10. 1109/ ICRA4 0945. 2020. 91975 54 (2020).

 26. Montagnani, F., Controzzi, M. & Cipriani, C. Exploiting arm posture synergies in activities of daily living to control the wrist 
rotation in upper limb prostheses: A feasibility study. in Annual International Conference of the IEEE Engineering in Medicine and 
Biology Society (EMBC), 2462–2465. https:// doi. org/ 10. 1109/ EMBC. 2015. 73188 92 (2015).

 27. Merad, M., De Montalivet, É., Roby-Brami, A. & Jarrassé, N. Intuitive prosthetic control using upper limb inter-joint coordina-
tions and IMU-based shoulder angles measurement: A pilot study. in IEEE/RSJ International Conference on Intelligent Robots and 
Systems (IROS), 5677–5682. https:// doi. org/ 10. 1109/ IROS. 2016. 77598 35 (2016).

 28. Popovic, D. & Popovic, M. Tuning of a nonanalytical hierarchical control system for reaching with FES. IEEE Transact. Biomed. 
Eng. 45, 203–212. https:// doi. org/ 10. 1109/ 10. 661268 (1998).

https://doi.org/10.1109/TMECH.2009.2033113
https://doi.org/10.1177/0309364616631348
https://doi.org/10.1016/j.clinbiomech.2008.05.008
https://doi.org/10.1097/JPO.0b013e31817ecb16
https://doi.org/10.1016/j.apmr.2011.06.026
https://doi.org/10.1080/17483100701714733
https://doi.org/10.3389/fnins.2016.00209
https://doi.org/10.3389/fnins.2016.00209
https://doi.org/10.1080/17483107.2019.1580777
https://doi.org/10.1002/pmrj.12351
https://doi.org/10.1109/TMECH.2016.2552999
https://doi.org/10.1109/TMECH.2016.2596104
https://doi.org/10.1016/j.medengphy.2017.06.034
https://doi.org/10.2147/ORR.S71468
https://doi.org/10.2147/ORR.S71468
https://doi.org/10.1109/10.204774
https://doi.org/10.1016/0141-5425(82)90021-8
https://doi.org/10.1109/MSP.2012.2203480
https://doi.org/10.1682/JRRD.2010.09.0177
https://doi.org/10.1038/s41598-019-45459-7
https://doi.org/10.1177/0309364612446652
https://doi.org/10.1109/ICRA.2018.8460491
https://doi.org/10.1038/s41598-017-17464-1
https://doi.org/10.1109/ICMA.2019.8816415
https://doi.org/10.1109/iembs.2005.1616283
https://doi.org/10.1109/iembs.2005.1616283
https://doi.org/10.1109/TNSRE.2017.2682642
https://doi.org/10.1109/ICRA40945.2020.9197554
https://doi.org/10.1109/EMBC.2015.7318892
https://doi.org/10.1109/IROS.2016.7759835
https://doi.org/10.1109/10.661268


12

Vol:.(1234567890)

Scientific Reports |        (2021) 11:15050  | https://doi.org/10.1038/s41598-021-94449-1

www.nature.com/scientificreports/

 29. Popovic, M. & Popovic, D. Cloning biological synergies improves control of elbow neuroprostheses. IEEE Eng. Med. Biol. Mag. 
20, 74–81. https:// doi. org/ 10. 1109/ 51. 897830 (2001).

 30. Iftime, S. D., Egsgaard, L. L. & Popović, M. B. Automatic determination of synergies by radial basis function artificial neural 
networks for the control of a neural prosthesis. IEEE Transact. Neural Syst. Rehabil. Eng. 13, 482–489. https:// doi. org/ 10. 1109/ 
TNSRE. 2005. 858458 (2005).

 31. Kaliki, R. R., Davoodi, R. & Loeb, G. E. Evaluation of a noninvasive command scheme for upper-limb prostheses in a virtual reality 
reach and grasp task. IEEE Trans. Biomed. Eng. 60, 792–802. https:// doi. org/ 10. 1109/ TBME. 2012. 21854 94 (2013).

 32. Merad, M. et al. Can we achieve intuitive prosthetic elbow control based on healthy upper limb motor strategies?. Front. Neurorobot. 
12, 1. https:// doi. org/ 10. 3389/ fnbot. 2018. 00001 (2018).

 33. Kopp, B. et al. The arm motor ability test: Reliability, validity, and sensitivity to change of an instrument for assessing disabilities 
in activities of daily living. Arch. Phys. Med. Rehabil. 78, 615–620. https:// doi. org/ 10. 1016/ S0003- 9993(97) 90427-5 (1997).

 34. Resnik, L. et al. Development and evaluation of the activities measure for upper limb amputees. Arch. Phys. Med. Rehabil. 94, 
488–494. https:// doi. org/ 10. 1016/j. apmr. 2012. 10. 004 (2013).

 35. Light, C. M., Chappell, P. H. & Kyberd, P. J. Establishing a standardized clinical assessment tool of pathologic and prosthetic hand 
function: Normative data, reliability, and validity. Arch. Phys. Med. Rehabil. 83, 776–783. https:// doi. org/ 10. 1053/ apmr. 2002. 32737 
(2002).

 36. Burgerhof, J. G., Vasluian, E., Dijkstra, P. U., Bongers, R. M. & van der Sluis, C. K. The Southampton hand assessment procedure 
revisited: A transparent linear scoring system, applied to data of experienced prosthetic users. J. Hand Ther. 30, 49–57. https:// doi. 
org/ 10. 1016/j. jht. 2016. 05. 001 (2017).

 37. Wang, S. et al. Evaluation of performance-based outcome measures for the upper limb: A comprehensive narrative review. PM 
and R 10, 951–962. https:// doi. org/ 10. 1016/j. pmrj. 2018. 02. 008 (2018).

 38. Pan, L., Crouch, D. L. & Huang, H. Comparing emg-based human-machine interfaces for estimating continuous, coordinated 
movements. IEEE Transact. Neural Syst. Rehabil. Eng. 27, 2145–2154. https:// doi. org/ 10. 1109/ TNSRE. 2019. 29379 29 (2019).

 39. Tharwat, A. Classification assessment methods. Appl. Comput. Inform.https:// doi. org/ 10. 1016/j. aci. 2018. 08. 003 (2018).
 40. Breiman, L. Out-of-bag estimation. https:// www. stat. berke ley. edu/ pub/ users/ breim an/ OOBes timat ion. pdf (1996).
 41. Biau, G. & Scornet, E. A random forest guided tour. TEST 25, 197–227. https:// doi. org/ 10. 1007/ s11749- 016- 0481-7 (2016).
 42. Patel, G. K., Castellini, C., Hahne, J. M., Farina, D. & Dosen, S. A classification method for myoelectric control of hand prostheses 

inspired by muscle coordination. IEEE Trans. Neural Syst. Rehabil. Eng. 26, 1745–1755. https:// doi. org/ 10. 1109/ TNSRE. 2018. 28617 
74 (2018).

 43. Peerdeman, B. Myoelectric forearm prostheses: State of the art from a user-centered perspective. J. Rehabil. Res. Dev. 48, 719–738. 
https:// doi. org/ 10. 1682/ JRRD. 2010. 08. 0161 (2011).

 44. Pulliam, C. L., Lambrecht, J. M. & Kirsch, R. F. Electromyogram-based neural network control of transhumeral prostheses. J. 
Rehabil. Res. Dev. 48, 739–754. https:// doi. org/ 10. 1682/ JRRD. 2010. 12. 0237 (2011).

 45. Kim, Y., Stapornchaisit, S., Kambara, H., Yoshimura, N. & Koike, Y. Muscle synergy and musculoskeletal model-based continuous 
multi-dimensional estimation of wrist and hand motions. J. Healthc. Eng. 2020, 13. https:// doi. org/ 10. 1155/ 2020/ 54512 19 (2020).

 46. Smith, L. H., Kuiken, T. A. & Hargrove, L. J. Evaluation of linear regression simultaneous myoelectric control using intramuscular 
EMG. IEEE Trans. Biomed. Eng. 63, 737–746. https:// doi. org/ 10. 1109/ TBME. 2015. 24697 41 (2016).

 47. Ameri, A., Kamavuako, E. N., Scheme, E. J., Englehart, K. B. & Parker, P. A. Support vector regression for improved real-time, 
simultaneous myoelectric control. IEEE Trans. Neural Syst. Rehabil. Eng. 22, 1198–1209. https:// doi. org/ 10. 1109/ TNSRE. 2014. 
23235 76 (2014).

 48. Hahne, J. M. et al. Linear and nonlinear regression techniques for simultaneous and proportional myoelectric control. IEEE Trans. 
Neural Syst. Rehabil. Eng. 22, 269–279. https:// doi. org/ 10. 1109/ TNSRE. 2014. 23055 20 (2014).

 49. Nielsen, J. L. et al. Simultaneous and proportional force estimation for multifunction myoelectric prostheses using mirrored 
bilateral training. IEEE Trans. Biomed. Eng. 58, 681–688. https:// doi. org/ 10. 1109/ TBME. 2010. 20682 98 (2011).

 50. Desmurget, M. & Prablanc, C. Postural control of three-dimensional prehension movements. J. Neurophysiol. 77, 452–464. https:// 
doi. org/ 10. 1152/ jn. 1997. 77.1. 452 (1997).

 51. Montagnani, F., Controzzi, M. & Cipriani, C. Is it finger or wrist dexterity that is missing in current hand prostheses?. IEEE Trans. 
Neural Syst. Rehabil. Eng. 23, 600–609. https:// doi. org/ 10. 1109/ TNSRE. 2015. 23981 12 (2015).

 52. Gates, D. H., Walters, L. S., Cowley, J., Wilken, J. M. & Resnik, L. Range of motion requirements for upper-limb activities of daily 
living. Am. J. Occup. Ther. 70, 7001350010p1–7001350010p10. https:// doi. org/ 10. 5014/ ajot. 2016. 015487 (2016).

 53. Kaufman-Cohen, Y., Portnoy, S., Levanon, Y. & Friedman, J. Does object height affect the dart throwing motion angle during 
seated activities of daily living?. J. Motor Behav. 52, 456–465. https:// doi. org/ 10. 1080/ 00222 895. 2019. 16456 38 (2020).

 54. PJ, R. A list of everyday tasks for use in prosthesis design and development. Bull. Prosth. Res. 10, 135–145 (1970).
 55. Wu, G. et al. ISB recommendation on definitions of joint coordinate systems of various joints for the reporting of human joint 

motion—Part II: Shoulder, elbow, wrist and hand. J. Biomech. 38, 981–992. https:// doi. org/ 10. 1016/j. jbiom ech. 2004. 05. 042 (2005).
 56. Chollet, F. et al. Keras. https:// github. com/ fchol let/ keras (2015).
 57. Nair, V. & Hinton, G. E. Rectified linear units improve restricted Boltzmann machines. in International Conference on Machine 

Learning (ICML), 807–814. https:// icml. cc/ Confe rences/ 2010/ papers/ 432. pdf (2010).
 58. Goodfellow, I., Bengio, Y., Courville, A. & Bengio, Y. Deep Learning, Vol. 1. http:// www. deepl earni ngbook. org (MIT Press, 2016).
 59. Kingma, D. P. & Ba, J. L. Adam. A method for stochastic optimization. in International Conference on Learning Representations 

(ICLR), https:// arxiv. org/ abs/ 1412. 6980 (2015).
 60. Smith, S. L., Kindermans, P. J., Ying, C. & Le, Q. V. Don’t decay the learning rate, increase the batch size. in International Conference 

on Learning Representations (ICLR). https:// arxiv. org/ abs/ 1711. 00489 (2018).
 61. Lipton, Z. C., Elkan, C. & Naryanaswamy, B. Optimal thresholding of classifiers to maximize F1 measure. Mach. Learn. Knowl. 

Discov. Databases 225–239. https:// doi. org/ 10. 1007/ 978-3- 662- 44851-9_ 15 (2014).
 62. Caruana, R. & Niculescu-Mizil, A. An empirical comparison of supervised learning algorithms. in International Conference on 

Machine Learning, 161–168. https:// doi. org/ 10. 1145/ 11438 44. 11438 65 (2006).
 63. Chen, W., Wang, Y., Cao, G., Chen, G. & Gu, Q. A random forest model based classification scheme for neonatal amplitude-

integrated EEG. BioMed. Eng. Online 13. https:// doi. org/ 10. 1186/ 1475- 925X- 13- S2- S4 (2014).
 64. Palermo, F. et al. Repeatability of grasp recognition for robotic hand prosthesis control based on sEMG data. in IEEE International 

Conference on Rehabilitation Robot (ICORR), 1154–1159. https:// doi. org/ 10. 1109/ ICORR. 2017. 80094 05 (2017).
 65. Burtsev, N. I., Shagdurov, V. C. & Demkin, I. O. Application of the random forest machine learning algorithm for recognizing 

patient arm movements while using a bionic prosthesis. AIP Conf. Proc. 2140, 020010. https:// doi. org/ 10. 1063/1. 51219 35 (2019).
 66. Dey, S., Yoshida, T., Ernst, M., Schmalz, T. & Schilling, A. F. A random forest approach for continuous prediction of joint angles and 

moments during walking: An implication for controlling active knee-ankle prostheses/orthoses. in IEEE International Conference 
on Cyborg and Bionic Systems (CBS), 66–71. https:// doi. org/ 10. 1109/ CBS46 900. 2019. 91144 39 (2019).

 67. König, I. R. et al. Patient-centered yes/no prognosis using learning machines. Int. J. Data Min. Bioinform. 2, 289–341. https:// doi. 
org/ 10. 1504/ IJDMB. 2008. 022149 (2008).

 68. Breiman, L. Random forests. Mach. Learn. 45, 5–32. https:// doi. org/ 10. 1023/A: 10109 33404 324 (2001).
 69. Pedregosa, F. et al. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830. http:// jmlr. org/ papers/ v12/ pedre 

gosa1 1a. html (2011).

https://doi.org/10.1109/51.897830
https://doi.org/10.1109/TNSRE.2005.858458
https://doi.org/10.1109/TNSRE.2005.858458
https://doi.org/10.1109/TBME.2012.2185494
https://doi.org/10.3389/fnbot.2018.00001
https://doi.org/10.1016/S0003-9993(97)90427-5
https://doi.org/10.1016/j.apmr.2012.10.004
https://doi.org/10.1053/apmr.2002.32737
https://doi.org/10.1016/j.jht.2016.05.001
https://doi.org/10.1016/j.jht.2016.05.001
https://doi.org/10.1016/j.pmrj.2018.02.008
https://doi.org/10.1109/TNSRE.2019.2937929
https://doi.org/10.1016/j.aci.2018.08.003
https://www.stat.berkeley.edu/pub/users/breiman/OOBestimation.pdf
https://doi.org/10.1007/s11749-016-0481-7
https://doi.org/10.1109/TNSRE.2018.2861774
https://doi.org/10.1109/TNSRE.2018.2861774
https://doi.org/10.1682/JRRD.2010.08.0161
https://doi.org/10.1682/JRRD.2010.12.0237
https://doi.org/10.1155/2020/5451219
https://doi.org/10.1109/TBME.2015.2469741
https://doi.org/10.1109/TNSRE.2014.2323576
https://doi.org/10.1109/TNSRE.2014.2323576
https://doi.org/10.1109/TNSRE.2014.2305520
https://doi.org/10.1109/TBME.2010.2068298
https://doi.org/10.1152/jn.1997.77.1.452
https://doi.org/10.1152/jn.1997.77.1.452
https://doi.org/10.1109/TNSRE.2015.2398112
https://doi.org/10.5014/ajot.2016.015487
https://doi.org/10.1080/00222895.2019.1645638
https://doi.org/10.1016/j.jbiomech.2004.05.042
https://github.com/fchollet/keras
https://icml.cc/Conferences/2010/papers/432.pdf
http://www.deeplearningbook.org
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1711.00489
https://doi.org/10.1007/978-3-662-44851-9_15
https://doi.org/10.1145/1143844.1143865
https://doi.org/10.1186/1475-925X-13-S2-S4
https://doi.org/10.1109/ICORR.2017.8009405
https://doi.org/10.1063/1.5121935
https://doi.org/10.1109/CBS46900.2019.9114439
https://doi.org/10.1504/IJDMB.2008.022149
https://doi.org/10.1504/IJDMB.2008.022149
https://doi.org/10.1023/A:1010933404324
http://jmlr.org/papers/v12/pedregosa11a.html
http://jmlr.org/papers/v12/pedregosa11a.html


13

Vol.:(0123456789)

Scientific Reports |        (2021) 11:15050  | https://doi.org/10.1038/s41598-021-94449-1

www.nature.com/scientificreports/

 70. Xiloyannis, M., Gavriel, C., Thomik, A. A. & Faisal, A. A. Gaussian process autoregression for simultaneous proportional multi-
modal prosthetic control with natural hand kinematics. IEEE Transact. Neural Syst. Rehabil. Eng. 25, 1785–1801. https:// doi. org/ 
10. 1109/ TNSRE. 2017. 26995 98 (2017).

Acknowledgements
The study was partially supported by the SUNY Multidisciplinary Small Team Grant (RFP #20-02-RSG), 240202-
06. We would like to thank all the trial subjects for participating in the trials.

Author contributions
J.K. led the research, provided subject matter expertise, and support throughout all the stages of the research and 
wrote the manuscript. C.P.S. designed the experiment, conducted the trials, processed the trial data, developed 
the Machine learning scripts, developed the Euler angle scripts, wrote the manuscript, and fabricated the trial 
hardware. N.L. created a base version of the Euler angle script for pronation/supination, designed the trials, and 
modified the pulley experiment hardware.

Competing interests 
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to J.K.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2021

https://doi.org/10.1109/TNSRE.2017.2699598
https://doi.org/10.1109/TNSRE.2017.2699598
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	A novel framework for designing a multi-DoF prosthetic wrist control using machine learning
	Results
	Neural network classifier. 
	Random forest regression model. 
	Controller output. 

	Discussion
	Conclusion
	Methods
	Human experiment set-up. 
	Experimental procedure. 
	Data pre-processing. 
	ML model training. 
	Classification model. 
	Regression model. 

	Control module design and testing. 

	References
	Acknowledgements


